Part Number Hot Search : 
5SMC75A 21UHR ICS85301 SMS6GE5 BTS412B PM8312 65C10 MP6KE22A
Product Description
Full Text Search
 

To Download K7A403600B06 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 1 - rev. 2.0 july 2006 k7a403200b k7a403600b 4mb sync. pipelined burst sram 100 tqfp with pb & pb-free (rohs compliant) * samsung electronics reserves the right to change products or specification without notice. information in this document is provided in relation to samsung products, and is subject to change without notice. nothing in this document shall be construed as granting any license, express or implied, by estoppel or otherwise, to any intellectual property rights in samsung products or technology. all information in this document is provided on as "as is" basis without guarantee or warranty of any kind. 1. for updates or additional information about sams ung products, contact your nearest samsung office. 2. samsung products are not intended for use in life suppor t, critical care, medical, safety equipment, or simi- lar applications where product failure could result in lo ss of life or personal or ph ysical harm, or any military or defense application, or any governmental procuremen t to which special terms or provisions may apply. specification
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 2 - rev. 2.0 july 2006 k7a403200b k7a403600b document title 128kx36 & 128kx32 & 256kx18-bit synchronous pipelined burst sram revision history remark preliminary preliminary preliminary preliminary final final history 1. initial draft 1. changed dc parameters icc ; from 350ma to 290ma at -16, from 330ma to 270ma at -15, from 300ma to 250ma at -14, i sb1 ; from 100ma to 80ma 1. delete pass-through 1. add x32 org. and industrial temperature 1. final spec release 2. changed pin capacitance - cin ; from 5pf to 4pf - cout; from 7pf to 6pf 1. add pb-free package draft date may. 15. 2001 june. 12. 2001 june.25. 2001 aug. 11. 2001 nov. 15. 2001 jul. 03. 2006 rev. no 0.0 0.1 0.2 0.3 1.0 2.0
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 3 - rev. 2.0 july 2006 k7a403200b k7a403600b note 1. p(q) [package type]: p-pb free, q-pb 2. c(i) [operating temperature]: c-commercial, i-industrial 3. support only pb package parts at this frequency. to use pb-free package, use faster frequency parts. org. vdd (v) speed (ns) access time (ns) part number rohs avail. 256kx18 3.3 6.0 3.5 k7a401800b-p(q) 1 c(i) 2 16 3.3 7.2 4.0 k7a401800b-q 3 c(i)14 ? 128kx32 3.3 6.0 3.5 k7a403200b-p(q) 1 c(i) 2 16 3.3 7.2 4.0 k7a403200b-q 3 c(i)14 ? 128kx36 3.3 6.0 3.5 k7a403600b-p(q) 1 c(i) 2 16 3.3 7.2 4.0 k7a403600b-q 3 c(i)14 ? 4mb spb sram ordering information
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 4 - rev. 2.0 july 2006 k7a403200b k7a403600b 128kx36 & 128kx 32 & 256kx18-bit synchronou s pipelined burst sram the k7a403600b, k7a403200b and k7a401800b are 4,718,592-bit synchronous static random access memory designed for high performance second level cache of pen- tium and power pc based system. it is organized as 128k(256k) words of 36(18) bits and inte- grates address and control registers, a 2-bit burst address counter and added some new functions for high perfor- mance cache ram applications; gw , bw , lbo , zz. write cycles are internally self-timed and synchronous. full bus-width write is done by gw , and each byte write is performed by the combination of we x and bw when gw is high. and with cs 1 high, adsp is blocked to control signals. burst cycle can be initiated with either the address status processor (adsp ) or address status cache controller (adsc ) inputs. subsequent burst addresses are generated internally in the system s burst sequence and are controlled by the burst address advance(adv ) input. lbo pin is dc operated and determines burst sequence(lin- ear or interleaved). zz pin controls power down state and reduces stand-by current regardless of clk. the k7a403600b, k7a403200b and k7a401800b are fab- ricated using samsung s high performance cmos tech- nology and is available in a 100pin tqfp package. multiple power and ground pins are utilized to minimize ground bounce. general description features logic block diagram ? synchronous operation. ? 2 stage pipelined operation with 4 burst. ? on-chip address counter. ? self-timed write cycle. ? on-chip address and control registers. ? v dd = 3.3v+0.3v/-0.165v power supply. ? v ddq supply voltage 3.3v+0.3v/-0.165v for 3.3v i/o or 2.5v+0.4v/-0.125v for 2.5v i/o. ? 5v tolerant inputs except i/o pins. ? byte writable function. ? global write enable controls a full bus-width write. ? power down state via zz signal. ? lbo pin allows a choice of either a interleaved burst or a linear burst. ? three chip enables for simple depth expansion with no data cont- nention; 2cycle enable, 1cycle disable. ? asynchronous output enable control. ? adsp , adsc , adv burst control pins. ? ttl-level three-state output. ? 100-tqfp-1420a. ? operating in commercial and industrial temperature range. clk lbo adv adsc adsp cs 1 cs2 cs 2 gw bw we x oe zz dqa0 ~ dqd7 burst control logic burst 128kx36/32, 256kx18 address control output data-in address counter memory array register register buffer logic control register control register a 0~a 1 a0~a1 or a2~a17 a0~a16 register dqpa ~ dqpd or a0~a17 a2~a16 (x=a,b,c,d or a,b) or dqa0 ~ dqb7 dqpa ~ dqpb 36/32 or 18 fast access times parameter symbol -16 -14 unit cycle time tcyc 6.0 7.2 ns clock access time tcd 3.5 4.0 ns output enable access time toe 3.5 4.0 ns
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 5 - rev. 2.0 july 2006 k7a403200b k7a403600b pin configuration (top view) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 100 pin tqfp (20mm x 14mm) dqpc/nc dqc 0 dqc 1 v ddq v ssq dqc 2 dqc 3 dqc 4 dqc 5 v ssq v ddq dqc 6 dqc 7 n.c. v dd n.c. v ss dqd 0 dqd 1 v ddq v ssq dqd 2 dqd 3 dqd 4 dqd 5 v ssq v ddq dqd 6 dqd 7 dqpd/nc 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 dqpb/nc dqb 7 dqb 6 v ddq v ssq dqb 5 dqb 4 dqb 3 dqb 2 v ssq v ddq dqb 1 dqb 0 v ss n.c. v dd zz dqa 7 dqa 6 v ddq v ssq dqa 5 dqa 4 dqa 3 dqa 2 v ssq v ddq dqa 1 dqa 0 dqpa/nc 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 a 6 a 7 cs 1 cs 2 we d we c we b we a cs 2 v dd v ss clk gw bw oe adsc adsp adv a 8 81 a 9 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 a 16 a 15 a 14 a 13 a 12 a 11 a 10 n.c. n.c. v dd v ss n.c. n.c. a 0 a 1 a 2 a 3 a 4 a 5 31 lbo pin name symbol pin name tqfp pin no. symbol pin name tqfp pin no. a 0 - a 16 adv adsp adsc clk cs 1 cs 2 cs 2 we x (x=a,b,c,d) oe gw bw zz lbo address inputs burst address advance address status processor address status controller clock chip select chip select chip select byte write inputs output enable global write enable byte write enable power down input burst mode control 32,33,34,35,36,37 44,45,46,47,48,49 50,81,82,99,100 83 84 85 89 98 97 92 93,94,95,96 86 88 87 64 31 v dd v ss n.c. dqa 0 ~a 7 dqb 0 ~b 7 dqc 0 ~c 7 dqd 0 ~d 7 dqpa~p d /nc v ddq v ssq power supply(+3.3v) ground no connect data inputs/outputs output power supply (2.5v or 3.3v) output ground 15,41,65,91 17,40,67,90 14,16,38,39,42,43,66 52,53,56,57,58,59,62,63 68,69,72,73,74,75,78,79 2,3,6,7,8,9,12,13 18,19,22,23,24,25,28,29 51,80,1,30 4,11,20,27,54,61,70,77 5,10,21,26,55,60,71,76 k7a403600b(128kx36) k7a403200b(128kx32)
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 6 - rev. 2.0 july 2006 k7a403200b k7a403600b pin configuration (top view) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 n.c. n.c. n.c. v ddq v ssq n.c. n.c. dqb 0 dqb 1 v ssq v ddq dqb 2 dqb 3 n.c. v dd n.c. v ss dqb 4 dqb 5 v ddq v ssq dqb 6 dqb 7 dqpb n.c. v ssq v ddq n.c. n.c. n.c. 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 a 10 n.c. n.c. v ddq v ssq n.c. dqpa dqa 7 dqa 6 v ssq v ddq dqa 5 dqa 4 v ss n.c. v dd zz dqa 3 dqa 2 v ddq v ssq dqa 1 dqa 0 n.c. n.c. v ssq v ddq n.c. n.c. n.c. 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 a 6 a 7 cs 1 cs 2 n.c. n.c. we b we a cs 2 v dd v ss clk gw bw oe adsc adsp adv a 8 81 a 9 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 a 17 a 16 a 15 a 14 a 13 a 12 a 11 n.c. n.c. v dd v ss n.c. n.c. a 0 a 1 a 2 a 3 a 4 a 5 31 lbo pin name symbol pin name tqfp pin no. symbol pin name tqfp pin no. a 0 - a 17 adv adsp adsc clk cs 1 cs 2 cs 2 we x (x=a,b) oe gw bw zz lbo address inputs burst address advance address status processor address status controller clock chip select chip select chip select byte write inputs output enable global write enable byte write enable power down input burst mode control 32,33,34,35,36,37, 44,45,46,47,48,49, 50,80,81,82,99,100 83 84 85 89 98 97 92 93,94 86 88 87 64 31 v dd v ss n.c. dqa 0 ~a 7 dqb 0 ~b 7 dqpa, pb v ddq v ssq power supply(+3.3v) ground no connect data inputs/outputs output power supply (2.5v or 3.3v) output ground 15,41,65,91 17,40,67,90 1,2,3,6,7,14,16,25,28,29, 30,38,39,42,43,51,52,53, 56,57,66,75,78,79,95,96 58,59,62,63,68,69,72,73 8,9,12,13,18,19,22,23 74,24 4,11,20,27,54,61,70,77 5,10,21,26,55,60,71,76 100 pin tqfp (20mm x 14mm) k7a401800b(256kx18)
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 7 - rev. 2.0 july 2006 k7a403200b k7a403600b function description the k7a4036/3200b and k7a401800b are synchronous sram des igned to support the burst addr ess accessing sequence of the p6 and power pc based microprocessor. all inputs (with the exception of oe , lbo and zz) are sampled on rising clock edges. the start and duration of the burst access is controlled by adsc , adsp and adv and chip select pins. the accesses are enabled with the chip select signals and output enabled signals. wait states are inserted into the access with adv . when zz is pulled high, the sram will enter a power down state. at this time, internal state of the sram is preserved. when zz returns to low, the sram normally operates after 2cycles of wake up time. zz pin is pulled down internally. read cycles are initiated with adsp (regardless of we x and adsc )using the new external address clocked into the on-chip address register whenever adsp is sampled low, the chip selects are sampl ed active, and the output buffer is enabled with oe . in read oper- ation the data of cell array accessed by the current address, r egistered in the data-out registers by the positive edge of clk, are car- ried to the data-out buffer by the next positive edge of clk. the data, registered in the data-out buffer, are projected to the output pins. adv is ignored on the clock edge that samples adsp asserted, but is sampled on the subsequent clock edges. the address increases internally for the next access of the burst when we x are sampled high and adv is sampled low. and adsp is blocked to control signals by disabling cs 1 . all byte write is done by gw (regaedless of bw and we x.), and each byte write is performed by the combination of bw and we x when gw is high. write cycles are performed by disabling the output buffers with oe and asserting we x. we x are ignored on the clock edge that sam- ples adsp low, but are sampled on the subsequent cloc k edges. the output buffers are disabled when we x are sampled low(regardless of oe ). data is clocked into the data input register when we x sampled low. the address in creases internally to the next address of burst, if both we x and adv are sampled low. individual byte write c ycles are performed by any one or more byte write enable signals(we a, we b, we c or we d) sampled low. the we a control dqa 0 ~ dqa 7 and dqpa, we b controls dqb 0 ~ dqb 7 and dqpb, we c controls dqc 0 ~ dqc 7 and dqpc, and we d control dqd 0 ~ dqd 7 and dqpd. read or write cycle may also be initi- ated with adsc , instead of adsp . the differences between cycles initiated with adsc and adsp as are follows; adsp must be sampled high when adsc is sampled low to initiate a cycle with adsc . we x are sampled on the same clock edge that sampled adsc low(and adsp high). addresses are generated for the burst access as shown below, the starting point of the burst seque nce is provided by the extern al address. the burst address counter wraps around to its initial st ate upon completion. the burst sequence is determined by the s tate of the lbo pin. when this pin is low, linear bur st sequence is selected. when this pi n is high, interleaved burst sequence is selected. burst sequence table (interleaved burst) note: 1. lbo pin must be tied to high or low, and floating state must not be allowed . lbo pin high case 1 case 2 case 3 case 4 a 1 a 0 a 1 a 0 a 1 a 0 a 1 a 0 first address fourth address 0 0 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 bq table (linear burst) note : 1. lbo pin must be tied to high or low, and floating state must not be allowed . lbo pin low case 1 case 2 case 3 case 4 a 1 a 0 a 1 a 0 a 1 a 0 a 1 a 0 first address fourth address 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 asynchronous truth table (see notes 1 and 2) : operation zz oe i/o status sleep mode h x high-z read ll dq l h high-z write l x din, high-z deselected l x high-z notes 1. x means "don t care". 2. zz pin is pulled down internally 3. for write cycles that following read cycles, the output buffers must be disabled with oe , otherwise data bus contention will occur. 4. sleep mode means power down state of which stand-by current does not depend on cycle time. 5. deselected means power down state of which stand-by current depends on cycle time.
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 8 - rev. 2.0 july 2006 k7a403200b k7a403600b synchronous t ruth table notes: 1. x means "don t care". 2. the rising edge of clock is symbolized by . 3. write = l means write operation in write truth table. write = h means read operation in write truth table. 4. operation finally depends on status of asynchronous input pins(zz and oe ). cs 1 cs 2 cs 2 adsp adsc adv write clk address accessed operation hxxxlx x n/a not selected llxlxxx n/a not selected lxhlxx x n/a not selected llxxlxx n/a not selected lxhxlx x n/a not selected lhllxx x external address begin burst read cycle lhlhlx l external address begin burst write cycle lhlhlx h external address begin burst read cycle xxxhhl h next address continue burst read cycle hxxxhl h next address continue burst read cycle xxxhhl l next address continue burst write cycle hxxxhl l next address continue burst write cycle xxxhhh h current address suspend burst read cycle hxxxhh h current address suspend burst read cycle xxxhhh l current address suspend burst write cycle hxxxhh l current address suspend burst write cycle write truth table (x36/32) notes: 1. x means "don t care". 2. all inputs in this table must meet setup and hold time around the rising edge of clk( ). gw bw we a we b we c we d operation hhxxxx read hlhhhh read h l l h h h write byte a h l h l h h write byte b h l h h l l write byte c and d hlllll write all bytes l x x x x x write all bytes truth tables write truth table (x18) notes: 1. x means "don t care". 2. all inputs in this table must meet setup and hold time around the rising edge of clk( ). gw bw we a we b operation h h x x read h l h h read h l l h write byte a h l h l write byte b h l l l write all bytes l x x x write all bytes
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 9 - rev. 2.0 july 2006 k7a403200b k7a403600b absolute maximum ratings* *note: stresses greater than those listed under "absolute maximum rati ngs" may cause permanent damage to the device. this is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. exposure to absolute maximum rating c onditions for extended periods may affect reliability. parameter symbol rating unit voltage on v dd supply relative to v ss voltage on v ddq supply relative to v ss v dd -0.3 to 4.6 v v ddq v dd v voltage on input pin relative to v ss v in -0.3 to v dd +0.3 v voltage on i/o pin relative to v ss v io -0.3 to v ddq +0.3 v power dissipation p d 2.2 w storage temperature t stg -65 to 150 c operating temperature commercial t opr 0 to 70 c industrial t opr -40 to 85 c storage temperature range under bias t bias -10 to 85 c capacitance* (t a =25 c, f=1mhz) *note : sampled not 100% tested. parameter symbol test condition typ max unit input capacitance c in v in =0v - 4 pf output capacitance c out v out =0v - 6 pf operating conditions at 3.3v i/o (0 c t a 70 c) * the above parameters are also guaranteed at industrial temperature range. parameter symbol min typ. max unit supply voltage v dd 3.135 3.3 3.6 v v ddq 3.135 3.3 3.6 v ground v ss 00 0v operating conditions at 2.5v i/o (0 c t a 70 c) * the above parameters are also guaranteed at industrial temperature range. parameter symbol min typ. max unit supply voltage v dd 3.135 3.3 3.6 v v ddq 2.375 2.5 2.9 v ground v ss 000v
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 10 - rev. 2.0 july 2006 k7a403200b k7a403600b dc electrical characteristics (t a =0 to 70 c, v dd =3.3v+0.3v/-0.165v) the above parameters are also guaranteed at industrial temperature range. * v il (min)=-2.0(pulse width t cyc / 2) ** v ih (max)=4.6(pulse width t cyc / 2) ** in case of i/o pins, the max. v ih =v ddq +0.3v parameter symbol test conditions min max unit input leakage current(except zz) i il v dd = max; v in =v ss to v dd -2 +2 a output leakage current i ol output disabled, v out =v ss to v ddq -2 +2 a operating current i cc device selected, i out =0ma, zz v il , all inputs=v il or v ih , cycle time cyc min. -16 - 290 ma -14 - 250 standby current i sb device deselected, i out =0ma,zz v il , f=max, all inputs 0.2v or v dd -0.2v -16 - 140 ma -14 - 130 i sb1 device deselected, i out =0ma, zz 0.2v, f = 0, all inputs=fixed (v dd -0.2v or 0.2v) -80ma i sb2 device deselected, i out =0ma, zz v dd -0.2v, f=max, all inputs v il or v ih -50ma output low voltage(3.3v i/o) v ol i ol = 8.0ma - 0.4 v output high voltage(3.3v i/o) v oh i oh = -4.0ma 2.4 - v output low voltage(2.5v i/o) v ol i ol = 1.0ma - 0.4 v output high voltage(2.5v i/o) v oh i oh = -1.0ma 2.0 - v input low voltage(3.3v i/o) v il -0.5* 0.8 v input high voltage(3.3v i/o) v ih 2.0 v dd +0.3** v input low voltage(2.5v i/o) v il -0.3* 0.7 v input high voltage(2.5v i/o) v ih 1.7 v dd +0.3** v test conditions parameter value input pulse level(for 3.3v i/o) 0 to 3v input pulse level(for 2.5v i/o) 0 to 2.5v input rise and fall time(measured at 0.3v and 2.7v for 3.3v i/o) 1ns input rise and fall time(measured at 0.3v and 2.1v for 2.5v i/o) 1ns input and output timing reference levels for 3.3v i/o 1.5v input and output timing reference levels for 2.5v i/o v ddq /2 output load see fig. 1 (v dd =3.3v+0.3v/-0.165v,v ddq =3.3v+0.3/-0.165v or v dd =3.3v+0.3v/-0.165v,v ddq =2.5v+0.4v/-0.125v, t a =0 to 70 c) * the above parameters are also guaranteed at industrial temperature range.
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 11 - rev. 2.0 july 2006 k7a403200b k7a403600b ac timing characteristics (t a =0 to 70 c, v dd =3.3v+0.3v/-0.165v) notes: 1. the above parameters are also guaranteed at industrial temperature range. 2. all address inputs must meet the specified setup and hold times for all rising clock edges whenever adsc and/or adsp is sampled low and cs is sampled low. all other synchronous inputs must meet the specified setup and hold times whenever this device is chip selected. 3. both chip selects must be active whenever adsc or adsp is sampled low in order for the this device to remain enabled. 4. adsc or adsp must not be asserted for at least 2 clock after leaving zz state. parameter symbol -16 -14 unit min. max min. max cycle time tcyc 6.0 - 7.2 - ns clock access time tcd - 3.5 - 4.0 ns output enable to data valid toe - 3.5 - 4.0 ns clock high to output low-z tlzc 0 - 0 - ns output hold from clock high toh 1.5 - 1.5 - ns output enable low to output low-z tlzoe 0 - 0 - ns output enable high to output high-z thzoe - 3.5 - 4.0 ns clock high to output high-z thzc 1.5 3.5 1.5 4.0 ns clock high pulse width tch 2.4 - 2.8 - ns clock low pulse width tcl 2.4 - 2.8 - ns address setup to clock high tas 1.5 - 1.5 -ns address status setup to clock high tss 1.5 - 1.5 -ns data setup to clock high tds 1.5 - 1.5 -ns write setup to clock high (gw , bw , we x) tws 1.5 - 1.5 -ns address advance setup to clock high tadvs 1.5 - 1.5 -ns chip select setup to clock high tcss 1.5 - 1.5 -ns address hold from clock high tah 0.5 - 0.5 - ns address status hold from clock high tsh 0.5 - 0.5 - ns data hold from clock high tdh 0.5 - 0.5 - ns write hold from clock high (gw , bw , we x) twh 0.5 - 0.5 - ns address advance hold from clock high tadvh 0.5 - 0.5 - ns chip select hold from clock high tcsh 0.5 - 0.5 - ns zz high to power down tpds 2 - 2 - cycle zz low to power up tpus 2 - 2 - cycle output load (b) (for t lzc , t lzoe , t hzoe & t hzc ) dout 5pf* fig. 1 * including scope and jig capacitance output load(a) dout z0=50 ? * capacitive load consists of all components of 30pf* the test environment. rl=50 ? 353 ? / 1538 ? +3.3v for 3.3v i/o 319 ? / 1667 ? vl=1.5v for 3.3v i/o v ddq /2 for 2.5v i/o /+2.5v for 2.5v i/o
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 12 - rev. 2.0 july 2006 k7a403200b k7a403600b clock adsp adsc address write cs adv oe data out timing waveform of read cycle notes: write = l means gw = l, or gw = h, bw = l, we x = l cs = l means cs 1 = l, cs 2 = h and cs 2 = l cs = h means cs 1 = h, or cs 1 = l and cs 2 = h, or cs 1 = l, and cs 2 = l t ch t cl t ss t sh t ss t sh t as t ah a1 a2 a3 burst continued with new base address t ws t wh t css t csh t advs t advh t oe t hzoe t lzoe t cd t oh (adv inserts wait state) t hzc q3-4 q3-3 q3-2 q3-1 q2-4 q2-3 q2-2 q2-1 q1-1 don t care undefined t cyc
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 13 - rev. 2.0 july 2006 k7a403200b k7a403600b timing waveform of wrte cycle clock adsp adsc address write cs adv data in t ch t cl t ss t sh t as t ah a1 a2 a3 (adsc extended burst) d2-1 d1-1 t css t csh (adv suspends burst) d2-2 d2-3 d2-4 d3-1 d3-2 d3-3 d2-2 d3-4 q0-3 q0-4 oe data out t ss t sh t ws t wh t advs t advh t ds t dh t hzoe don t care undefined t cyc
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 14 - rev. 2.0 july 2006 k7a403200b k7a403600b timing waveform of combination read/wrte cycle(adsp controlled, adsc =high) clock adsp address write cs adv oe data out t ch t cl t ds t dh q3-2 data in t oh a1 a2 a3 d2-1 q3-1 q3-3 t ss t sh t as t ah t ws t wh t advs t advh t lzoe t hzoe t cd t hzc q3-4 t lzc q1-1 don t care undefined t cyc
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 15 - rev. 2.0 july 2006 k7a403200b k7a403600b timing waveform of single read/write cycle(adsc controlled, adsp =high) clock adsc address write cs adv oe data in t ch t cl t hzoe d6-1 data out t ws t wh t lzoe t oh t oe d5-1 d7-1 t ws t wh t lzoe t dh t ds a1 a2 a3 a4 a5 a6 a7 a8 a9 q3-1 q1-1 q2-1 q4-1 q8-1 t css t csh t ss t sh q9-1 don t care undefined t cyc
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 16 - rev. 2.0 july 2006 k7a403200b k7a403600b timing waveform of power down cycle clock adsp address write cs adv data in t ch t cl d2-2 oe t hzoe d2-1 a1 t ss t sh data out t pus adsc zz t as t ah t css t csh sleep state normal operation mode zz recovery cycle a2 t ws t wh t lzoe q1-1 t oe t hzc t pds zz setup cycle don t care undefined t cyc
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 17 - rev. 2.0 july 2006 k7a403200b k7a403600b application information the samsung 128kx36 synchronous pipelined burst sram has tw o additional chip selects for simple depth expansion. depth expansion this permits easy secondary cache upgrades from 128k depth to 256k depth without extra logic. data address clk ads 64-bits cs 2 cs 2 clk adsc we x oe cs 1 address data adv adsp 128kx36 spb sram (bank 0) cs 2 cs 2 clk adsc we x oe cs 1 address data adv adsp 128kx36 spb sram (bank 1) clk address cache controller a [0:17] a [17] a [0:16] a [17] a [0:16] i/o [0:71] microprocessor clock adsp address data out bank 0 is selected by cs 2 , and bank 1 deselected by cs 2 q1-1 q1-2 q1-4 q1-3 oe data out t ss t sh a1 a2 write cs 1 a n+1 adv (bank 0) (bank 1) q2-2 q2-4 q2-3 t as t ah t ws t wh t advs t advh t oe t lzoe t hzc bank 0 is deselected by cs 2 , and bank 1 selected by cs 2 t css t csh t cd t lzc [0:n] q2-1 interleave read timing (refer to non-interleave write timing for interleave write timing) don t care undefined *notes: n = 14 32k depth 15 64k depth 16 128k depth 17 256k depth (adsp controlled, adsc =high)
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 18 - rev. 2.0 july 2006 k7a403200b k7a403600b application information the samsung 256kx18 synchronous pipelinde burst sram has two additional chip selects for simple depth expansion. depth expansion this permits easy secondary cache upgrades from 256k depth to 512k depth without extra logic. data address clk ads microprocessor cs 2 cs 2 clk adsc we x oe cs 1 address data adv adsp 256kx18 spb sram (bank 0) cs 2 cs 2 clk adsc we x oe cs 1 address data adv adsp 256kx18 spb sram (bank 1) clk address cache controller a [0:18] a [18] a [0:17] a [18] a [0:17] i/o [0:71] clock adsp address data out bank 0 is selected by cs 2 , and bank 1 deselected by cs 2 q1-1 q1-2 q1-4 q1-3 oe data out t ss t sh a1 a2 write cs 1 a n+1 adv (bank 0) (bank 1) q2-2 q2-4 q2-3 t as t ah t ws t wh t advs t advh t oe t lzoe t hzc bank 0 is deselected by cs 2 , and bank 1 selected by cs 2 t css t csh t cd t lzc [0:n] q2-1 interleave read timing (refer to non-interleave write timing for interleave write timing) don t care undefined *notes: n = 14 32k depth, 15 64k depth, 16 128k depth, 17 256k depth (adsp controlled, adsc =high)
k7a401800b 128kx36/x32 & 256kx18 synchronous sram - 19 - rev. 2.0 july 2006 k7a403200b k7a403600b 0.10 max 0~8 22.00 0.30 20.00 0.20 16.00 0.30 14.00 0.20 1.40 0.10 1.60 max 0.05 min (0.58) 0.50 0.10 #1 (0.83) 0.50 0.10 100-tqfp-1420a 0.65 0.30 0.10 0.10 max + 0.10 - 0.05 0.127 package dimensions units ; millimeters/inches


▲Up To Search▲   

 
Price & Availability of K7A403600B06

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X